姓名:戴启立
职务职称:副教授,博士生导师
生态环境部城市空气颗粒物污染防治重点实验室成员
中国气象局-南开大学大气环境与健康联合实验室成员
天津市软件体验与人机交互重点实验室成员
邮箱:daiql@nankai.edu.cn
研究领域:大气污染防治;大气环境计量学;环境大数据分析;环境机器学习
研究兴趣:聚焦空气污染精准溯源与控制的前沿问题,运用数理统计与机器学习/人工智能技术,创新环境大数据建模与因果推断方法,解耦“空气污染—人类活动—天气气象”的复杂系统关联,研发数据驱动的污染诊断受体模型与政策评估工具。诚邀感兴趣的同学、同行联系合作!
教育背景
2013.9—2019.6 南开大学 英国上市公司365 理学博士(硕博连读)
2016.8—2017.8 美国莱斯大学(Rice University) 市政与环境工程系联合培养博士生
2009.9—2013.6 安徽师范大学 英国上市公司365 工学学士
科研经历
2023.10 —至今 南开大学 英国上市公司365,副教授
2019.7—2023.9 南开大学 英国上市公司365,师资博士后、助理研究员
学术与社会任职
1. 中国环境科学学会生态环境人工智能专业委员会委员(2025—3030)
2.《Intelligent Climate and Eco-Environment》期刊编委(2025—)
3.《Journal of Hazardous Materials》期刊青年编委(2024—)
4.《Science of The Total Environment》期刊青年编委(2024—)
5. 欧洲地球科学联盟大会(European Geosciences Union General Assembly)分会召集人(2025)
6. 亚洲大洋洲地球科学学会(Asia Oceania Geoscience Society)第21届年会分会召集人(2024)
7. 天津市第一批生态环境青年科技人才,天津市生态环境局(2024)
荣誉与奖励
1. 中国气象服务协会科学技术奖气象科技创新奖二等奖(第二完成人,2025)
2. “2024年全国仿真创新应用大赛”研究生组一等奖全国优秀指导教师(2024)
3. 入选天津市第一批青年科技人才(2024)
4. 《中国科学》杂志社2023年度优秀封面奖(2024)
5. 天津市第十七届青年教师教学大赛校内选拔赛工科组一等奖(南开大学, 2023)
6. Wiley Top Downloaded Article(美国地球物理学会Journal of Geophysical Research: Atmospheres期刊, 2022)
7. 美国化学会Enviromental Science & Technology Letters期刊2022年度最佳论文奖(Best Paper Award, 2022);
8. Wiley Top Downloaded Article(美国地球物理学会Geophysical Research Letters期刊, 2021)
科研项目
1.国家自然科学基金面上项目,机器学习驱动的PM2.5源排放控制成效评估新方法研究,2026—2029,主持;
2.天津市自然科学基金面上项目,城市PM2.5空间精细化大数据模拟与溯源研究,2024—2027,主持;
3.天津市第一批青年科技人才培养项目,2024—2026,主持;
4.国家重点研发计划项目,环境空气质量评估与标准制修订关键技术及应用,2022—2026, 子课题负责人;
5.国家自然科学基金青年项目,大气颗粒物氧化潜势在排放源和环境受体中的粒径分布及来源解析方法研究,2021—2023,主持;
6.中国博士后科学基金特别资助项目,基于机器学习算法量化排放和气象因素对PM2.5环境浓度贡献的方法研究,2022—2023,主持;
7.中国博士后科学基金面上项目,基于先验信息约束的大气颗粒物来源解析方法研究,2019—2021,主持;
8.中央高校基本科研业务费,贝叶斯推断大气颗粒物溯源方法,2021—2022,主持;
9.国家自然科学基金面上项目,耦合多维先验信息的新型大气颗粒物来源解析方法研究,2022—2025,参与;
10. 生态环境部国家大气污染联合攻关中心,细颗粒物和臭氧污染协同防控“一市一策”驻点跟踪研究,2020—2023,参与;
11. 天津市科委生态环境治理科技重大专项, 天津市大气复合污染精准解析及防治方案研究, 2018—2021, 参与;
12. 生态环境部国家大气污染联合攻关中心,多模型融合的综合精细化来源解析技术,2017—2019,参与。
依托上述技术研发类项目,构建了空气污染成因来源诊断与管控成效评估系列新方法(详见学术论著相关论文,欢迎使用!),相关研究成果多次服务于国家重大活动空气质量保障及区域重污染天气应急管控,应用于支撑天津、合肥、杭州、郑州、驻马店等十多个重点城市大气污染防治决策。
学术论著
发表学术论文100余篇,包括4篇入选ESI 1%高被引论文,累计引用5000余次,谷歌H指数37。其中以第一/通讯作者在《中国科学:地球科学》、Environmental Science & Technology (Letters)、Geophysical Research Letters、Journal of Geophysical Research: Atmospheres、Atmospheric Chemistry and Physics等期刊发表论文30余篇。部分研究/评论论文如下(†为同等贡献,*为通讯作者):
(1)机器学习赋能大气环境管理决策:
1. Liang, W., Li, Y., Liu, X., Dai, Q.*, Feng, Y.* (2025). AI-based Bayesian structural time series modeling for assessing PM2.5 air quality improvements during the Beijing 2022 Winter Olympics. Atmospheric Environment, 358: 121328. (基于AI预测模型的空气质量短期干预效果评估)
2. Liang, W., Li, Y., Liu, X., Yan, R., Zhu, W., Li, Y., Shen, J.*, Bi, X., Zhang, Y., Dai, Q.*, Feng, Y. (2025). Evaluating Hangzhou’s urgent source-specific regulatory policies for the 2024 New Year haze: A receptor model and machine learning approach. Journal of Environmental Sciences.
3. Song, Y.†, Wu, H.†, Dai, Q.*, Liu, X., Zhang, Y., Feng, Y. (2024). Differentiating Periodic Drivers of Air Quality Changes: A Two-step Decomposition Approach integrating Machine Learning and Wavelet Analysis. Journal of Geophysical Research: Atmosphere, 129(7), e2023JD039658.(机器学习-小波分解技术揭示空气污染的周期律)
4. Dai, Q., Dai, T., Hou, L., Li, L., Bi, X., Zhang, Y.*, Feng, Y.*. (2023). Quantifying the impacts of meteorology and emissions on the interannual variation of air pollutants in major Chinese cities in 2015-2021. Science China Earth Sciences, 66(8), 1725–1737. [中文版:“污染减排与气象因素对我国主要城市2015~2021年环境空气质量变化的贡献评估. 中国科学: 地球科学, 53(8): 1741–1753.” ](机器学习气象调整技术的方法学介绍及应用)
5. Dai, T., Dai, Q.*, Bi, X., Wu, J., Liu, B., Zhang, Y., Feng, Y. (2023). Measuring the emission changes and meteorological dependence of source-specific BC aerosol using factor analysis coupled with machine learning. Journal of Geophysical Research: Atmospheres, 128(5), e2023JD038696.
6. Song, C., Liu, B., Cheng, K., Cole, M., Dai, Q.*, Elliott, R., Shi, Z.*. (2023). Attribution of air quality benefits to Clean Winter Heating Polices in China: Combining machine learning with causal Inference. Environmental Science & Technology, 57, 17707−17717.(北方清洁供暖政策的机器学习因果推断)
7. Hou, L., Dai, Q.*, Song, C., Liu, B., Guo, F., Dai, T., Li, L., Liu, B., Bi, X., Zhang, Y., Feng, Y. (2022). Revealing drivers of haze pollution by explainable machine learning. Environmental Science & Technology Letters, 9(2), 112–119. (空气污染成因的机器学习解释技术,ESI高被引论文, ES&TL年度最佳论文奖)
8. Han, B.*, Yao, T., Li, G., Song, Y., Zhang, Y., Dai, Q.*, Yu, J. (2022). Marginal reduction in surface NO2 attributable to airport shutdown: a machine learning regression-based approach. Environmental Research, 214: 114117. (量化机场排放活动对地面空气质量的贡献)
9. Dai, Q., Hou, L., Liu, B., Zhang, Y., Song, C., Shi, Z., Hopke, P. K., Feng, Y.* (2021). Spring Festival and COVID-19 Lockdown: Disentangling PM Sources in Major Chinese Cities. Geophysical Research Letters, 48(11), e2021GL093403. (Wiley Top Downloaded Article)
(2)受体模型源解析技术的发展与应用:
1. Hopke, P.K.*, Dai, Q., Li, L., Feng, Y. (2020). Global review of recent source apportionments for airborne particulate matter. Science of the Total Environment, 740: 140091.(ESI高被引论文)
2. Hopke, P.K.*, Feng, Y., Dai, Q. (2022). Source apportionment of particle number concentrations: A global review. Science of The Total Environment, 819: 153104.
3. Dai, Q., Liu, B., Bi, X., Wu, J., Liang, D., Zhang, Y., Feng, Y.*, Hopke, P. K.*. (2020). Dispersion normalized PMF provides insights into the significant changes in source contributions to PM2.5 after the COVID-19 outbreak. Environmental Science & Technology, 54(16), 9917–9927.(构建了扩散归一化PMF溯源技术,已在全球六十余座城市得到应用)
4. Song, L., Dai, Q.*, Feng, Y., Hopke, P. K. (2021). Estimating uncertainties of source contributions to PM2.5 using moving window evolving dispersion normalized PMF. Environmental Pollution, 286: 117576. (固定窗口PMF滑动求解策略:捕捉短时非稳态排放源、给出PM2.5源贡献不确定度的有偏估计)
5. Dai, T., Dai, Q.*, Yin, J., Chen, J., Liu, B., Bi, X., Wu, J., Zhang, Y., Feng, Y*. (2024). Spatial source apportionment of airborne coarse particulate matter using PMF-Bayesian receptor model. Science of the Total Environment, 917: 170235. (多站点监测数据的颗粒物空间溯源方法)
6. Dai, Q., Chen, J., Wang, X., Dai, T., Tian, Y., Bi, X., Shi, G., Wu, J., Liu, B., Zhang, Y., Yan, B., Kinney, P. L., Feng, Y.*, Hopke, P. K. (2023). Trends of source apportioned PM2.5 in Tianjin over 2013-2019: impacts of Clean Air Actions. Environmental Pollution,325: 121344.
7. Dai, Q.*, Ding, J., Song, C., Liu, B., Bi, X., Wu, J., Zhang, Y., Feng, Y.*, Hopke, P. K. (2021). Changes in source contributions to particle number concentrations after the COVID-19 outbreak: Insights from a dispersion normalized PMF. Science of the Total Environment, 759: 143548.
8. Dai, Q., Hopke, P.K.*, Bi, X., Feng, Y.*. (2020). Improving apportionment of PM2.5 using multisite PMF by constraining G-values with a priori information. Science of the Total Environment, 736: 139657.
9. Dai, Q., Bi, X.*, Huangfu, Y., Yang, J., Li, T., Khan, J., Song, C., Xu, J., Wu, J., Zhang, Y., Feng, Y. (2019). A size-resolved chemical mass balance (SR-CMB) approach for source apportionment of ambient particulate matter by single element analysis. Atmospheric Environment, 197, 45–52.
(3)“空气污染—人类活动/天气气象”关联解耦及机制探讨:
1. Shao, M., Lv, S., Song, Y., Liu, R., Dai, Q.* (2024). Disentangling the Effects of Meteorology and Emissions from Anthropogenic and Biogenic sources on the Increased Surface Ozone in Eastern China. Atmospheric Research, 311: 107699.
2. Shao, M., Liu, X., Lv, S., Dai, Q.*, Mu, Q. (2024). The importance of local thermal circulations in PM2.5 formation in a river valley: A case study from the lower Yangtze River, China. Journal of Geophysical Research: Atmospheres, 129(2), e2023JD039717.(人类文明起源于大江大河沿岸,内陆河湖引发的局地环流如何影响城市空气污染?)
3. Ding, J., Dai, Q.*, Fan, W., Lu, M., Zhang, Y., Han, S.*, Feng, Y. (2023). Impact of meteorology and precursor emission changes on O3 variation in Tianjin, China from 2015 to 2021. Journal of Environmental Sciences, 126, 506–516.
4. Shao, M., Yang, J., Wang, J., Chen, P., Liu, B., Dai, Q.*. (2022). Co-occurrence of surface O3, PM2.5 pollution, and tropical cyclones in China. Journal of Geophysical Research: Atmospheres, 127(14), e2021JD036310. (系统分析了近十年来100余次台风过程对我国PM2.5与O3污染的跨区域影响规律及机制探讨,Wiley Top Downloaded Article)
5. Shao, M., Xu, X., Lu, Y., Dai, Q.*. (2022). Spatio-temporally differentiated impacts of temperature inversion on surface PM2.5 in eastern China. Science of The Total Environment, 855: 158785. (我国中东部地区近十年来逆温的时空演变及其对PM2.5浓度的影响)
6. Shao, M., Dai, Q.*, Yu, Z., Zhang, Y., Xie, M., Feng, Y. (2021). Responses in PM2.5 and its chemical components to typical unfavorable meteorological events in the suburban area of Tianjin, China. Science of the Total Environment, 788: 147814.
7. Dai, Q., Ding, J., Hou, L., Li, L., Cai, Z., Liu, B., Song, C., Bi, X., Wu, J., Zhang, Y.*, Feng, Y., Hopke, P. K. (2021). Haze episodes before and during the COVID-19 shutdown in Tianjin, China: Contribution of fireworks and residential burning. Environmental Pollution, 286: 117252.
8. Amouei Torkmahalleh, M.*, Akhmetvaliyeva, Z., Omran, A.D., Darvish Omran, F., Kazemitabar, M., Naseri, M., Naseri, M., Sharifi, H., Malekipirbazari, M., Kwasi Adotey, E., Gorjinezhad, S., Eghtesadi, N., Sabanov, S., Alastuey, A., de Fátima Andrade, M., Buonanno, G., Carbone, S., Cárdenas-Fuentes, D.E., Cassee, F.R., Dai, Q., Henríquez, A., Hopke, P.K., Keronen, P., Khwaja, H.A., Kim, J., Kulmala, M., Kumar, P., Kushta, J., Kuula, J., Massagué, J., Mitchell, T., Mooibroek, D., Morawska, L., Niemi, J.V., Ngagine, S.H., Norman, M., Oyama, B., Oyola, P., Öztürk, F., Petäjä, T., Querol, X., Rashidi, Y., Reyes, F., Ross-Jones, M., Salthammer, T., Savvides, C., Stabile, L., Sjöberg, K., Söderlund, K., Sunder Raman, R., Timonen, H., Umezawa, M., Viana, M., Xie, S. (2021). Global Air Quality and COVID-19 Pandemic: Do We Breathe Cleaner Air? Aerosol and Air Quality Research, 21, 200567. (空气污染对全球性干预的的响应统计)
9. Hopke, P.K.* and Dai, Q. (2021). Why it makes sense that increased PM2.5 was correlated with anthropogenic combustion-derived water. Proceedings of the National Academy of Sciences the United States of America, 118(19), e2102255118.